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Abstract— This study presents a distributed gradient-based
approach to solve system optimal dynamic traffic assign-
ment (SODTA) formulated based on the cell transmission model.
The algorithm distributes SODTA into local sub-problems, who
find optimal values for their decision variables within an inter-
section. Each sub-problem communicates with its immediate
neighbors to reach a consensus on the values of common decision
variables. A sub-problem receives proposed values for common
decision variables from all adjacent sub-problems and incorpo-
rates them into its own offered values by weighted averaging and
enforcing a gradient step to minimize its objective function. Then,
the updated values are projected onto the feasible region of the
sub-problems. The algorithm finds high quality solutions in all
tested scenarios with a finite number of iterations. The algorithm
is tested on a case study network under different demand levels
and finds solutions with at most a 5% optimality gap.

Index Terms— Distributed, system optimal, dynamic traffic
assignment, sub-problem, decomposition.

I. INTRODUCTION

DYNAMICc Traffic Assignment (DTA) is a well-studied
research area to determine time-dependent traffic flows

by minimizing the cost of the system or individual users in
transportation networks. DTA deployment has brought many
benefits to a wide range of applications over the past decades.
Network design [1]–[4], traffic operations [5], congestion
pricing [6], evacuation planning [7], and traffic management
systems [8] are some of DTA applications.

DTA with accurate network loading models has many deci-
sion variables and constraints to encompass its spatial/temporal
scales and the number of origin-destination (OD) pairs. The
number of decision variables and constraints can further
increase based on the utilized network loading concept. For
instance, a cell transmission model (CTM)-based DTA will
have more decision variables and constraints than a link
performance function-based DTA, as CTM divides each link
into several shorter links, which increases the number of
decision variables.

Centralized approaches solve the optimization model with
no decomposition, distribution, or parallelism. Central opti-
mization frameworks do not scale with the size of DTA,
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especially when complex network loading concepts, such
as CTM are in use [5], [9]–[12]. Decomposition approaches
convert the model into sub-problems and a master prob-
lem. Each subproblem has less computational complexity in
comparison with the original model because the subproblem
contains only a fraction of the variables and constraints
of the original model. Therefore, decomposition approaches
can improve scalability; however, non-spatial decomposition
approaches face computational complexity growth in the sub-
problems as the size of the original problem grows. Besides,
all existing decomposition techniques require solving the
master problem (a central component) to aggregate the solu-
tions found by sub-problems and expanding the network will
increase the complexity of the master problem as well. There-
fore, while decomposition approaches can provide optimality
bounds and scale better than the centralized approaches, they
eventually become intractable when the size of the problem
grows [13]–[18].

This paper presents a distributed gradient-based approach
(DGA) to overcome the discussed drawbacks of existing
decomposition approaches. The proposed methodology dis-
tributes network-level DTA into several intersection-level
DTA sub-problems. Constraints and the objective function are
exclusively distributed among sub-problems.

It allocates a computational node to each sub-problem and
does not require a central component or a master problem.
Therefore, it scales better than the decomposition algorithms,
whose complexity depend on the network size. The com-
putational complexity of sub-problems does not depend on
the number of nodes and links in this approach as a result
of the spatial decomposition; however, it is a function of
the number of OD pairs. This intersection-level distribution
is well-suited for urban network planning purposes because
extending network by adding more intersections (nodes and
links) will not change the computational complexity of the
methodology and its structure.

The approach starts with setting initial values for deci-
sion variables. These values can be found by simulating the
network with a path-based CTM and sending the demand
through the shortest paths found by Dijkstra’s algorithm. Then,
the approach performs three steps to update the value of
decision variables iteratively at each sub-problem: (1) it first
incorporates the value of common decision variables among
sub-problems by taking a weighted average, (2) the approach
adjusts the value of the decision variables from the first step
by moving them towards the negative direction of the gradient
of the objective function at each sub-problem to minimize the
objective, and (3) it projects the values of step 2 onto the set
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of constraints of each sub-problem to maintain feasibility. The
approach iterates among these three steps until the values of
shared decision variables from sub-problems reach consensus:
there is an acceptable disagreement on the generated values
of the decision variables. The sub-problems communicate
based on a hypothetical information exchange graph that
consists of nodes and directional links. Each node and link
represent a sub-problem and the communication between sub-
problems, respectively. A weight is assigned to each link for
incorporating information among sub-problems. The approach
uses these weights for taking a weighted average in the first
step.

It can be shown theoretically that the algorithm eventually
converges to the optimal solution of the problem. Note that the
approach can work without necessarily starting with a feasible
solution. Furthermore, the approach is applicable to problems
with nonlinear and quadratic objective functions since it needs
either the gradient or sub-gradients of the objective function.

In the remainder of this paper, we present a review of rele-
vant literature to solve SODTA problems. Then, we describe
the problem formulation and the solution technique in separate
sections. The discussion is continued by presenting a case
study network and numerical results. Finally, the concluding
remarks and directions for future research are presented.

II. LITERATURE REVIEW

Ziliaskopoulos [9] formulated SODTA with one destination
using CTM as a linear and convex program. He solved the
program centrally using the Simplex method for a small
network with 10 cells. Beard and Ziliaskopoulos [5] further
improved this formulation to jointly optimize signal tim-
ing parameters and traffic assignment considering multiple
OD pairs. This formulation was a mixed-integer linear pro-
gram and was solved centrally for only two intersections.
Chiu and Zheng [10] also modified the CTM-based SODTA to
address emergency and disaster conditions. They presented a
linear formulation with multiple OD pairs and optimized it for
a simplified network of 40 cells using the interior point method
to find paths and departure schedules for muti-priority groups.
Aziz and Ukkusuri [12] proposed a non-linear and quadratic
CTM-based SODTA formulation to minimize emission and
travel time with a single destination. They solved the model
centrally for a network with 88 cells. Zheng and Chiu [11]
proposed a network flow algorithm to solve Ziliaskopou-
los’s [9] formulation and overcome the scalability issue of
the previous centralized approaches. They first proved that
SODTA was equivalent to the earliest arrival flow problem.
Then, they created a time-expanded network to solve the
earliest arrival flow problem. They applied the algorithm to
a network with 2012 cells. Even though the algorithm was
more efficient than the previous techniques, it was restricted
to single destination problems since the earliest arrival flow
problem was not equivalent to SODTA for multiple OD pairs.
Therefore, the algorithm was not applicable to SODTA with
multiple OD pairs. All these approaches used a centralized
solution approach, which did not scale well with temporal and
spatical scales of the CTM-based traffic assignment problems.

Therefore, they were applicable to smaller-size problems with
a limited amount of available memory and time.

Long et al. [19] showed that the link-based formulation
was more computationally efficient compared to path-based
counterparts. However, solving the problem for larger cases
still required more efficient algorithms. They presented vari-
ous formulations to model SODTA using Link Transmission
Mode (LTM) to optimize route and departure choice deci-
sions. Different combinations of models including first-in-first-
out (FIFO) and non-holding-back constraints were presented.
The problems without FIFO constraints were solved using
a commercial solver and those with FIFO constraints were
optimized using the branch and bound algorithm for a network
of twelve nodes. Long and Szeto [20] also studied LTM for
the SODTA problem considering FIFO conditions. Vehicle
holding back was also addressed using mixed-integer con-
straints. The proposed formulation with FIFO constraints was
a mixed-integer linear program that had more computational
complexity compared to linear problems. The problem was
solved using a branch and bound algorithm via commercial
software.

Decomposition approaches were developed to decre-
ase the computational complexity of transportation
problems [21]–[24] and SODTA. Li et al. [16] presented
a decomposition algorithm based on the Dantzig-Wolfe
principle to solve Ziliaskopoulos’s [9] formulation. The
algorithm consisted of a sub-problem and a master problem.
The sub-problem generated link flows using a minimum-cost-
flow problem, and the master problem found the best convex
combination of all generated flows. The number of decision
variables in the master problem increases over iterations, and
the computational complexity of the sub-problems and the
master problem increase by adding more nodes and links
to the network. Moreover, the algorithm cannot be applied
to cases where the ratio of free-flow speed to backward
propagation speed is not an integer value. Lin et al. [15] also
used the Dantzig-Wolfe principle to develop a heuristic-based
decomposition algorithm to calibrate the flow capacity of
a User Equilibrium (UE) DTA with a single destination
and CTM traffic dynamics. They created sub-problems by
decomposing the dual formulation for bi-level capacity
calibration problem. The master problem considered the
relaxed constraints in sub-problems and combined their
solutions. Similar to Li et al.’s [16] study, the growth in
the computational complexity of the master problem and
sub-problems is unavoidable. Ramadurai and Ukkusuri [25]
proposed an approach with acyclic sub-networks for ODs and
activity sequences to solve a user equilibrium DTA problem
with a point queue model. The route choice, location, time,
and duration of an activity were decision variables. In the
approach, sub-network equilibrium was achieved by changing
the flow of paths. The optimality condition was not guaranteed
in this simulation-based approach.

Jafari et al. [14] decomposed the UE static traffic assign-
ment problem spatially by creating sub-networks to represent
sub-problems. The sub-problems found the traffic assignment
solution within a sub-network given the regional demand
from a master problem. The master problem solved the static
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traffic assignment problem for an aggregated network using
modified travel times obtained from the sub-problems. They
needed to create an aggregated network with arbitrary arcs that
contained all paths based on the original network. They applied
a method of sensitivity analysis by Jafari and Boyles [26]
to find required parameters for arbitrary links and relative
changes in path flows by demand fluctuations at each iteration.
The approach by Boyles [27] provided the basis for network
aggregation to create the master problem and model sub-
networks. Boyles’s [27] method could find the cost func-
tion of arbitrary arcs in the aggregated network as well.
In Jafari et al.’s [14] approach, considering more sub-networks
leads to increasing the complexity of the aggregated network
and the master problem. Moreover, the algorithm is restricted
to acyclic networks and requires an initial feasible solution
that satisfies UE conditions.

Mehrabipour et al. [13] developed an OD-based decomposi-
tion approach using the Dantzig-Wolfe principle to overcome
some drawbacks in previous approaches. The approach solved
a CTM-based SODTA problem and consisted of a master prob-
lem and sub-problems. Each sub-problem found cell flows for
one OD pair, and the master problem combined the generated
flows considering the unseen constraints in sub-problems on
total flow over all OD pairs. This approach increased the scala-
bility of centralized approaches while guaranteeing optimality
conditions. However, the computational complexity of the
master problem grew with the number of iterations. Besides,
the computational complexity of the master and sub-problems
increased by adding more nodes and links to the network.

A. The Summary of Contributions

The contributions of this paper are as follow:

1. The proposed approach is completely distributed. The
sub-problems work cooperatively without requiring
a central optimization unlike existing decomposition
approaches developed in [13]–[18], [28]–[30] Therefore,
the proposed approach is scalable with the size of the
network.

2. The approach finds high quality solutions to the SODTA
problem with a reasonable number of iterations. The
required assumptions for convergence do not restrict
the application of the approach to specific network
properties such as limiting the ratio of free-flow speed
to backward propagation wave speed [16] and having
specific network geometry [14], [18].

3. The computational complexity of sub-problems is inde-
pendent of the number of nodes and links in the
network since we create each sub-problem by a spa-
tial distribution of the objective function and the
set of constraints unlike the previous approaches:
(e.g., [14]–[18], [28]–[30]).

III. PROBLEM FORMULATION

SODTA is formulated as a linear program utilizing the CTM
traffic dynamics introduced by Daganzo [31], [32]. In cell
transmission model, a road is discretized into homogenous
segments called cells. Homogenous cells have the same length

and free-flow speed. Also, the study period is divided into
time intervals named time steps. The length of each cell is
equivalent to the distance that a vehicle can travel in one-time
step. Note that CTM relates flow and density in each cell
using non-linear equations. Some examples of formulations
based on CTM can be found in [33]–[36]. CTM can also be
extended to model transit flows [37] and energy consumption
in transportation networks [38]. We used the linearized
form of the CTM-based SODTA formulation introduced
by Beard and Ziliaskopoulos [5] and modified the set of
OD pairs to reduce the computational complexity. The
cell-based constraints developed in [39] can be incorporated
in our formulation to resolve priority issues at merge cells in
the future.

TABLE V (see Appendix) presents the sets, decision vari-
ables, parameters, notation, and terms used throughout the
paper. Let C, T , CO D , and S (i) respectively denote the set of
cells, time steps, OD pairs, and cells successor to cell i ∈ C .
This formulation includes two sets of decision variables. The
first set is the number of vehicles xt,od

i in cell i ∈ C at time
step t ∈ T associated with OD pair (o, d) ∈ CO D , and the
second set is the number of vehicles yt,od

i j flowing from cell
i ∈ C to successor cell j ∈ S (i) at time step t ∈ T associated
with OD pair (o, d) ∈ CO D . Traffic signal timing parameters
are input to this formulation, and equation (1) finds the variable
saturation flow rate f t

i at intersection cell i ∈ CI for time
step t ∈ T based on the signal timing parameters. We use
CI and Fi to denote the set of intersection cells and constant
saturation flow rate of cell i ∈ CI . The signal status gt

i is a
binary parameter defined for all intersection cells i ∈ CI and
time steps t ∈ T . When the signal is green, it will be one, and
zero otherwise. The variable saturation flow rate is equal to
the constant saturation flow rate if the signal in the intersection
cell is green.

f t
i = gt

i Fi ∀t ∈ T, i ∈ CI (1)

We define the minimization of total travel time as the
objective function in expression (2). The total travel time is
found by summing the number of all vehicles xt,od

i in all
network cells except for sink cells i ∈ CCS for all OD pairs
(o, d) ∈ CO D over all time steps t ∈ T and multiplying
the result by τ (i.e., the duration of each time step). We can
eliminate the time step duration τ from the objective function
since it has a constant value.

Min
∑

(o,d)∈CO D

∑
t∈T

∑
i∈C\CS

τ xt,od
i (2)

Constraints (3), (4), and (5) show the conservation of flow
for ordinary, source, and sink cells, respectively. An increase
or decrease in the number of vehicles xt+1,od

i − xt,od
i between

time steps t ∈ T and t + 1 ∈ T is equal to the difference of
the total inflow and outflow of cell i ∈ C at time step t ∈ T
for OD pair (o, d) ∈ CO D .

∑
k∈P(i)

yt,od
ki −

∑
j∈S(i)

yt,od
i j = xt+1,od

i − xt,od
i

∀t ∈ T, i ∈ C {CS, CO } , (o, d) ∈ CO D (3)

Dt,od
i −

∑
j∈S(i)

yt,od
i j = xt+1,od

i − xt,od
i

∀t ∈ T, i ∈ CO , (o, d) ∈ CO D (4)
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∑
i∈P( j )

yt,od
i j = xt+1,od

j − xt,od
j

∀t ∈ T, j ∈ CS, (o, d) ∈ CO D (5)

Constraint (6) limits the total outgoing flow
∑

j∈S(i) yt,od
i j

from cell i ∈ C to its successor cells j ∈ S (i) to the
occupancy xt,od

i of the cell at time step t ∈ T with OD pair
(o, d) ∈ CO D .
∑

j∈S(i)
yt,od

i j ≤ xt,od
i ∀t ∈ T, i ∈ C, (o, d) ∈ CO D (6)

Constraints (7) and (8) respectively ensure that the total
outgoing flow from and the total incoming flow to a cell are
limited to the constant saturation flow rate of the cell. We use
Fi to denote the constant saturation flow rate of cell i ∈ C .

∑
(o,d)∈CO D

∑
j∈S(i)

yt,od
i j ≤ Fi ∀t ∈ T, i ∈ C (7)

∑
(o,d)∈CO D

∑
i∈P( j )

yt,od
i j ≤ Fj ∀t ∈ T, j ∈ C (8)

The total incoming flow
∑

(o,d)∈CO D

∑
i∈P( j ) yt,od

i j to cell
j ∈ C at time step t ∈ T should be less than or equal to the
available capacity M j −∑

(o,d)∈CO D
xt,od

j of that cell as shown
by constraint (9). Note that M j denotes the maximum number
of vehicles that cell j ∈ C can accommodate. We use δ to
denote the ratio of free-flow speed to the backward propagation
speed.
∑

(o,d)∈CO D

∑
i∈P( j )

yt,od
i j ≤δ

(
M j −

∑
(o,d)∈CO D

xt,od
j

)

∀t ∈ T, j ∈ C (9)

Constraint (10) limits the total outgoing flow∑
(o,d)∈CO D

∑
j∈S(i) yt,od

i j from intersection cell i ∈ CI

to variable saturation flow rate f t
i at time step t ∈ T .

We sum the flow over all links between cell i ∈ CI and its
successor cell j ∈ S (i) over all OD pairs to find the total
outflow

∑
(o,d)∈CO D

∑
j∈S(i) yt,od

i j . Equation (1) finds the
variable saturation flow rate f t

i given the signal status gt
i for

intersection cell i ∈ CI and time step t ∈ T .
∑

(o,d)∈CO D

∑
j∈S(i)

yt,od
i j ≤ f t

i ∀t ∈ T, i ∈ CI (10)

Constraints (11) and (12) are used to ensure that the decision
variables are nonnegative.

xt,od
i ≥ 0 ∀t ∈ T, i ∈ C, (o, d) ∈ CO D (11)

yt,od
i j ≥ 0 ∀t ∈ T, i ∈ C {CS} , j ∈ S (i) , (o, d) ∈ CO D

(12)

The summary of the proposed optimization model follows:
Min

∑
(o,d)∈CO D

∑
t∈T

∑
i∈C\CS

τ xt,od
i

s.t. (3) − (12)

IV. METHODOLOGY

We present a distributed gradient-based methodology to
solve the SODTA problem. The discussions are continued
in five subsections: (1) the distribution of SODTA problem
formulation, (2) initialization, (3) the procedure of distributed
gradient-based update, (4) termination criteria, and (5) conver-
gence properties.

In the formulation distribution section, we partition the
cell-based SODTA formulation among sub-problems with an
intersection-level segmentation so that the number of sub-
problems is equal to the number of intersections. Each sub-
problem contains some parts of the objective function and
constraints of the original SODTA formulation that have deci-
sion variables corresponding to the cells and links within the
intersection assigned to the sub-problem. The sub-problems
do not share any constraint, and the objective function is
distributed among sub-problems so that the summation of the
objective functions is equivalent to the objective function of
the original SODTA problem.

In the initialization step, we find initial values for the
decision variables of each sub-problem. We start by generating
the shortest paths for each OD pair using Dijkstra’s algo-
rithm [40] and sending the demand to the network through
these paths using a path-based CTM simulation [13], [41].
We initialize the approach with the occupancy and flow values
that are the outputs of the simulation. This simulation is a
cell transmission model developed by Daganzo (1990) and
used to simulate the movement of vehicles across the network.
Then, the value of the decision variables of each sub-problem
is updated over iterations. The updated value for a variable
will be the weighted average of all presented values for that
variable. We find the weighted average at the current iteration
for all sub-problems using the value of decision variables from
either the initialization step or the previous iteration. Then,
the values of variables are updated considering the negative
direction of the gradient of the objective function of each sub-
problem (to minimize it) and project the value of the decision
variables on the set of constraints at each sub-problem to
maintain feasibility. The approach iterates until the conflict
among the proposed values from the sub-problems is within
an acceptable threshold. Note that having a unique optimal
solution is not guaranteed in our approach. Fig. 1 shows the
overall framework of the methodology, and we provide more
details about each part of the figure in the rest of this section.

A. The Distribution of SODTA Formulation

The first step of the methodology is to decompose the
network-level SODTA problem formulation into intersection-
level sub-problems. It is not necessary to perform the decom-
position around the intersections. Grouping intersections into
one subproblem is also possible. Including more intersections
in one sub-problem reduces the number of shared decision
variables, which consequently reduces the conflict and the
required number of iterations. However, the decision space
of each sub-problem will grow substantially, which leads
to more computational effort at each iteration. Therefore,
even though the approach can find optimal or near-optimal
solutions in a fewer number of iterations, each iteration
can become more complex with a longer runtime. Each
sub-problem will have decision variables associated with
one intersection. The summation of the objective functions
from each sub-problem is equivalent to the objective func-
tion of the original SODTA problem, and the union of
the constraints from each sub-problem is equivalent to the
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Fig. 1. The framework of the distributed gradient-based methodology.

original constraint set. Note that the sub-problems do not share
any constraints. This intersection-level decomposition is well-
suited for solving problems in urban street networks since
assigning more intersections to the network will not change
the architecture of the methodology and its computational
complexity. Regional partitioning is used in [7] for static traffic
assignment and in [42] for SODTA with route and departure
time variables. More general regional partitioning examples
can be found in [43]–[45]. The boundary of each intersection
should be selected such that each intersection (subproblem)
has more or less the same number of decision variables to
balance out the run time and reduce overhead delays. A general
formulation for sub-problem s ∈ N is shown below. This
formulation differs from the original formulation in the set
of cells for which the constraints are defined. The sets are
defined in Table V. A formulation for sub-problem s ∈ N is
shown in (13)-(23).

Min
∑

(o,d)∈CO D

∑
t∈T

∑
i∈Cess x t,od

i (13)
∑

k∈P(i)
yt,od

ki −
∑

j∈S(i)
yt,od

i j = xt+1,od
i −xt,od

i

∀t ∈ T, i ∈ Ceoss, (o, d) ∈ CO D (14)

Dt,od
i −

∑
j∈S(i)

yt,od
i j = xt+1,od

i −xt,od
i

∀t ∈ T, i ∈ Cos , (o, d) ∈ CO D (15)∑
i∈P( j )

yt,od
i j = xt+1,od

j − xt,od
j

∀t ∈ T, j ∈ Css , (o, d) ∈ CO D (16)∑
j∈S(i)

yt,od
i j ≤xt,od

i ∀t ∈ T, i ∈ Cess , (o, d) ∈ CO D

(17)∑
(o,d)∈CO D

∑
j∈S(i)

yt,od
i j ≤Fi ∀t ∈ T, i ∈ Cess (18)

∑
(o,d)∈CO D

∑
i∈P( j )

yt,od
i j ≤ Fj ∀t ∈ T, j ∈ Ceos (19)

∑
(o,d)∈CO D

∑
i∈P( j )

yt,od
i j ≤ δ(M j −

∑
∀(o,d)∈CO D

xt,od
j )

∀t ∈ T, j ∈ Ceos (20)∑
(o,d)∈CO D

∑
j∈S(i)

yt,od
i j ≤ f t

i ∀t ∈ T, i ∈ Cis (21)

xt,od
i ≥ 0 ∀t ∈ T, i ∈ Cs , (o, d) ∈ CO D (22)

yt,od
i j ≥ 0 ∀t ∈ T, i ∈ Cs , j ∈ S (i) , (o, d) ∈ CO D (23)

B. Initialization

The approach starts with initial values for all decision
variables at the first iteration, see Fig. 1. The initial solutions
do not have to be feasible for the original SODTA formulation.
We first implement Dijkstra’s algorithm [40] to generate the
shortest paths for all OD pairs. Note that we assume that the
network is under free-flow condition. Then, we use the path-
based CTM simulation introduced by Ukkusuri et al. [41] to
find occupancy xt,od

i for cell i ∈ Cs at time step t ∈ T with
OD pair (o, d) ∈ CO D and flow yt,od

i j for links between cell

i ∈ Cs and its successor cell j ∈ S (i) at time step t ∈ T
with OD pair (o, d) ∈ CO D for all sub-problems s ∈ N .

C. Distributed Gradient Update

This procedure updates the decision variables of all sub-
problems in iteration k + 1 ∈ K using three main steps:

Step 1: Each sub-problem optimizes the values of its
decision variables. Therefore, decision variables that are in
common between several sub-problems will have various
values. This step sets the value of these decision variables in
each sub-problem equal to their weighted average. The weights
in each sub-problem are determined such that they satisfy the
required conditions for convergence.

Step 2: The approach moves the computed values for sub-
problem s ∈ N from Step 1 towards the negative direction
of the gradient of the objective function of the corresponding
sub-problem to minimize the total travel time within the region
assigned to the sub-problem.

Step 3: The approach projects the decision variable values
in sub-problem s ∈ N from Step 2 onto the set of constraints
of the sub-problem to make the values feasible for that
sub-problem.

Note that the formulation is not changed for updating
the flow and occupancy values. The adjustment on the
flow values are handled by the gradient update procedure
We describe these steps with a mathematical representation
in the rest of this section. We first introduce four definitions
for the information exchange graph (Definition 1), neighbors
of a sub-problem (Definition 2), the gradient of a function
(Definition 3), and the projection operator (Definition 4).

Definition 1 (Information Exchange Graph): The infor-
mation exchange graph G = (N, A) contains nodes and
directional links that belong to sets N and A, respectively.
Node s ∈ N represents a sub-problem, and link (s, ��) ∈ A
shows the transfer of information from sub-problem s ∈ N
to sub-problem �� ∈ N . If there is a variable in common
between sub-problems s, �� ∈ N , directional links (s, ��) ∈ A
and (��, s) ∈ A are needed. There is also a self-arc at each node
i.e., {(s, ��) : s = ��,∀s, �� ∈ N}. This arc represents the use of
information in the computation of sub-problem s ∈ N that is
generated by itself. Weight value ��s �� for the link going from
node s ∈ N to node �� ∈ N is also assigned to link (s, ��) ∈ A to
be used for incorporating information from sub-problem s ∈ N
for decision variables in sub-problem �� ∈ N . Assumption 1
determines the value of weights and is required to prove the
convergence of the approach. We can use identical values for
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wights on all links (s, ��) ∈ A if s �= ��. Weights on self-arcs
s ∈ N satisfy equation ��ss = − ∑

��∈Cns :s �=�� ����s . Numerical
examples for the weights are provided for the simple example
in this section and the test network in the result section.

Assumption 1: Let us use ε and ε � to show a lower and
an upper bound for weights ��s �� on all links (s, ��) ∈ N ,
respectively. The information exchange graph G = (N, A)
and weight ��s �� on link (s, ��) ∈ N should satisfy the following
conditions:

(1) Information exchange graph G = (N, A) should be
connected.

(2) Weights must satisfy ��s �� = ����s for all s, �� ∈ N
(3) If weight ��s �� �= 0, we have ε ≤ ��s �� ≤ ε � for

all s, �� ∈ N such that ε, ε � > 0
(4) Weights on self-arcs s ∈ N must satisfy equation ��ss =

− ∑
��∈Cns :s �=�� ����s

Definition 2 (The Neighbors of a Sub-Problem): The neigh-
bors of sub-problem s ∈ N are sub-problems �� ∈ N : �� �= s
that offer estimation for at least one decision variable of sub-
problem s ∈ N . In other words, sub-problem �� ∈ N is a
neighbor of sub-problem s ∈ N if and only if ����s > 0.
We define the set of neighbors of sub-problem s ∈ N including
itself by ns .

In general, any node s ∈ N may be connected to any other
node �� ∈ N in the information exchange graph G even if the
sub-problems (nodes) are not immediate neighbors in the orig-
inal (physical) network if their corresponding sub-problems
share a decision variable. This fact will not affect the distrib-
uted structure of the methodology because the approach uses
the information from the previous iteration for the exchange
process, not the current iteration. However, the structure of
SODTA formulation and intersection-based distribution lead to
the presence of links only between immediate neighbors in the
information exchange graph. The reason is that the immediate
neighbors share decision variables corresponding to the links
between any two intersections (regions).

Definition 3 (Gradient of a Function): Let Fs (x), Gs ∈ R
n ,

and Xs respectively denote the objective function value of sub-
problem s ∈ N given vector x, the gradient of the objective
function Fs (x), and the feasible region of sub-problem s ∈ N .
The gradient Gs satisfies inequality (24) for all vectors z,
x ∈ Xs .

Fs (z) + G�
s (x − z) ≤ Fs (x) (24)

Definition 4 (Projection Operator): We use the projection
operator P X [z] to find the projection of vector z onto a closed
convex set X using Euclidean norm as shown in (25).

P X [z] = argminx∈X �z − x� (25)

A projection is a linear transformation, and the projection
operator is used to map any vector onto a closed convex set.
By solving argminx∈X �z − x�, we can apply this operator to
map vector of x ∈ X on set X .

We now describe all three steps for iteration k + 1 ∈ K
assuming that the value of occupancy and flow decision
variables are available (either from the initialization step or
previous iteration k ∈ K for all sub-problems s ∈ N). We first
update the value of decision variables as described in Steps 1

and 2. We define auxiliary parameters ���t,od
i

: t ∈ T, i ∈
Cs , (o, d) ∈ CO D and ��t,od

i j
: t ∈ T, i ∈ Cs , j ∈ S (i) , (o, d) ∈

CO D for updating the value of cell occupancy and flow
decision variables, respectively. If a decision variable appears
in only one sub-problem, we find its auxiliary parameter using
either equation (26) or (27). Equations (26) and (27) find
the auxiliary parameters for occupancy and flow variables,
respectively. Including a weighted average in these equations
is not required because the decision variable is optimized
exclusively. We only need to move the value of the decision
variable from the initialization step or previous iteration k ∈ K
at sub-problem s ∈ N towards the negative direction of the
gradient of the objective function. We denote the gradient of
the objective function of sub-problem s ∈ N by Gs and the
step size by γ k+1. The gradient of objective function of sub-
problem s ∈ N respect to xt,od

i and yt,od
i j are shown by Gt,od

s,i

and Gt,od
s,i j , respectively.

We use equation (28) for the occupancy variable and (29)
for the flow variable to find their auxiliary parameters when a
decision variable appears in more than one sub-problem. For
instance, the weighted average for decision variable xt,od

i :
t ∈ T, i ∈ Cs , (o, d) ∈ CO D at sub-problem s ∈ N is∑

s,��∈ns , j∈Cns :i= j ��s ��xt,od
j , which takes weighted average of

the generated values for this variable by itself and its neighbors
from previous iteration k ∈ K . Then, the value of xt,od

i
generated by sub-problem s ∈ N at iteration k ∈ K is
added to term αk+1 ∑

s,��∈ns , j∈Cns :i= j ��s ��xt,od
j − γ k+1Gs to

find auxiliary parameter ���t,od
i

. We also use αk+1 to denote
the step size used for consensus among decision variables
at iteration k + 1 ∈ K . The same approach is used to find
other auxiliary parameters at iteration k + 1 ∈ K as shown in
equation (29).

If xt,od
i : t ∈ T, i ∈ Cs, (o, d) ∈ CO D (26)

is only in sub-problem s ∈ N :

���t,od
i

= xt,od
i − γ k+1Gt,od

s,i

If yt,od
i j : t ∈ T, i ∈ Cs , j ∈ S (i) , (o, d) ∈ CO D is only in

sub-problem s ∈ N :

��t,od
i j

= yt,od
i j − γ k+1Gt,od

s,i j (27)

If xt,od
i : t ∈ T, i ∈ Cs , (o, d) ∈ CO D is several sub-problems

in addition to s ∈ N :

���t,od
i

= xt,od
i + αk+1

∑
s,��∈ns , j∈Cns :i= j

��s ��xt,od
j − γ k+1Gt,od

s,i

(28)

If yt,od
i j : t ∈ T, i ∈ Cs, j ∈ S (i) , (o, d) ∈ CO D is in several

sub-problems in addition to s ∈ N :

���t,od
i

= yt,od
i j + αk+1

∑
s,s∈ns, j∈Cns :i= j

��s ��yt,od
i j − γ k+1Gt,od

s,i j

(29)

Then, we project the value of auxiliary parameters onto the
constraints set of sub-problem s ∈ N as discussed in Step 3
and using the projection operator described in Definition 4.
We find new values for decision variables at iteration
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Fig. 2. The distribution of a link with 4 cells to sub-problems 1 and 2.

k + 1 ∈ K by solving the following optimization program
for sub-problem s ∈ N .

Min
∑

(o,d)∈CO D

∑
t∈T

∑
i∈Cs

∥∥∥xt,od
i − ���t,od

i

∥∥∥
2

+
∑

(o,d)∈CO D

∑
t∈T

∑
i∈Cs , j∈S(i)

∥∥∥yt,od
i j − ��t,od

i j

∥∥∥
2

s.t. Constraints (2)-(12) for sub-problem s ∈ N (30)

We continue the procedure of updating the value of auxiliary
parameters and decision variables for sub-problem s ∈ N over
iterations k ∈ K until the termination criterion is satisfied.

Equation (31) shows the update procedure in vector nota-
tion. The vector of decision variables in sub-problem s ∈ N
at iteration k + 1 is denoted by X k+1

s , and Xs is the feasible
region of sub-problem s ∈ N . Let ��s �� and Gs denote the
weight for link (s, ��) ∈ N in information exchange graph
G = (N, A) and the gradient of the objective function of sub-
problem s ∈ N , respectively. Step sizes at iteration k + 1 ∈ K
are αk+1 and γ k+1.

X k+1
s = PXs

[
X k

s + αk+1
∑

��∈ns
����sX k

�� − γ k+1Gs

]
(31)

Fig. 2 shows a small network of four cells that is distributed
to two sub-problems. We also illustrate the three steps of the
update procedure in Fig. 3 using vector notation to visualize
this procedure for this simple example. Each sub-problem
contains those constraints and parts of the objective function
that have the decision variables corresponding to cells and
links within the region assigned to that sub-problem. Note
that the constraints and objective function can be distributed
following a different structure as long as the explained condi-
tions in section A are satisfied. In this simple example, the
sub-problems share the decision variables corresponding to
the link between cells 2 and 3. Adding more links between
cells 2 and 3 will not change the information exchange graph
nor the performance of the approach because this one link
forces the flow decision variables to appear in both sub-
problems, and these sub-problems share information using two
directional arcs in the information exchange graph.

Fig. 3.a shows information exchange graph G = (N, A),
where N = {1, 2} and A = {(1, 2) , (2, 1) , (1, 1) , (2, 2)}.
In Fig. 3. .b-d, each red circle represents the feasible region
of one sub-problem, and vector z∗ ∈ X∗ denotes the vector
of optimal solutions. Vector z∗ ∈ X∗ is within the feasible
region of the original problem as well. The number of variables
in common among sub-problems will not change this region.
Note that sub-problems do not need to share all decision
variables. In other words, if there is at least one variable in
common, the sub-problems share information.

The vector of initial values for decision variables for
sub-problems 1 and 2 at iteration 0 ∈ K are denoted
by X 0

1 and X 0
2 , respectively. Fig. 3.b shows the incorporation

of the value of decision variables and the computation of
weighted average values for sub-problems 1 and 2 using
parameters a and b, respectively, as described in Step 1. For
example, we explain how to compute the value of a. We first
multiply weight ��11 on self-arc (1, 1) on node 1 in information
exchange graph G with the vector of values for decision
variables X 0

1 in sub-problem 1 at iteration 0 ∈ K , that is
��11X 0

1 , and find term ��21X 0
2 the same way. We then find

the value of a by summing terms ��11X 0
1 and ��21X 0

2 and
multiplying the result by step size α1. The value of b is found
following the same procedure. Fig. 3.c presents Step 2 of the
update procedure. We first sum the values of a and b with
X 0

1 and X 0
2 , respectively. Then, we add −γ 1G1 and −γ 1G2 to

the value of X 0
1 + a and X 0

2 + b to move them towards the
negative direction of the objective function gradient and find
c and d , respectively. Fig. 3.d presents the third step, where
we project the value of c and d on the feasible region of
sub-problems 1 and 2 to find the vector of new values for
decision variables X 1

1 and X 1
2 at iteration 1 ∈ K , respectively.

In the next section, we explain the required assumption for
determining the value of step sizes and weights.

D. Convergence Properties

It can be shown that the solution of DGA converges to
the optimal solution of the SODTA formulation using similar
techniques proposed in [46], [47]. Due to space limitations,
we only show the assumptions and the final theorem here.

Assumption 2: The step sizes αk and γ k should sat-
isfy these conditions: (1)

∑∞
k=1 αk = ∞ and

∑∞
k=1

γ k = ∞, (2)
∑∞

k=1 (αk)
2

< ∞ and
∑∞

k=1 (γ k)
2

< ∞,

(3)
∑∞

k=1 (αk)
2
(γ

k
)
2

< ∞, (4)
∑∞

k=1
(γ k)

2

αk < ∞, and
(5)

∑∞
k=1 min(αk, γ k) = ∞.

Theorem 1: Vectors X k+1
s generated by sub-problems

s ∈ N using the proposed distributed gradient-based method-
ology converge to a common optimal vector z∗ ∈ X∗, i.e.,
lim
k→γ

X k+1
s = z∗, ∀s ∈ N if Assumption 1 and Assumption 2

hold.

E. Termination Criterion

The methodology finds the optimal solution when there
is no disagreement among the values of decision variables
found by different sub-problems. Only some of the flow
variables for the boundary links between intersections belong
to more than one sub-problem. The optimal solution is found
when sub-problems are in agreement on the value of these
decision variables, or in other words when the left-hand side
of inequality (21) is zero. Since urban streets have a different
number of lanes, the value of flow decision variables should be
normalized to compute the disagreement by dividing the flow
variable by the maximum capacity of receiving or sending
cells. We set the termination criterion to reach a disagreement
of at most ε.

If the termination criterion is not met, we update step sizes
αk+1 and γ k+1 and go back to the distributed gradient-based
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Fig. 3. The procedure of distributed gradient-based update for an iteration.

update step.
∑

t∈T

∑
od∈O D

∑
i∈Cs , j∈S(i),e∈C ��∈ns

, f ∈S(e):i=e, j= f,s �=��

×
∣∣∣∣∣

yt,od
i j

max
(
Mi , M j

) − yt,od
ef

max
(
Me, M f

)
∣∣∣∣∣ ≤ ε (32)

This termination criterion is checked using a distributed
communication paradigm. Each sub-problem checks inequal-
ity (32), and if it satisfies the termination criterion, it stops
updating the value of variables. The sub-problems compute
the termination at the same time. The value of ε does not
dependent on the network size since it is determined for each
intersection. Finding the feasible solution is possible regardless
of the value for �. Moreover, we select the duration of study
so that it is long enough for all vehicles can exit the network.

The vector of optimal solutions for the subproblems may
not be a feasible solution to SODTA. Therefore, a feasible
solution is found using CTM simulation. The input to the
CTM is turning ratios that are found using the output of
projections on the feasible region of subproblems. The output
of the simulation is feasible flows for the entire network.

V. TEST NETWORK

We tested DGA on a Nguyen and Dupuis [48] network
and portion of the downtown Springfield network in Illinois.
We used the modified Nguyen and Dupuis [48] network
by Long and Szeto [20]. This network contains 17 nodes,
23 links, and four OD pairs, and its cell representation has
57 cells, 63 links, 4 OD pairs. The network is decomposed
into two regions creating two sub-problems in DGA. The
two regions have 30 and 27 cells. They also have 36 and
31 links, respectively, from which 4 links are shared and the
average number of decision variables in each subproblem is
2700 variables. Similar demand level, jam density, and flow
capacity in [19] have been used. The network consists of
20 intersections with one-way and two-way streets, as shown
in Fig. 4. All intersections are signalized with predefined signal

timing parameters. In this figure, roads are shown with links,
and the circles show the intersection number.

We considered 15 OD pairs and three demand profiles
for this test network, representing undersaturated, saturated,
and oversaturated conditions. We assumed demand for ODs
is known. The proposed technique in [49], [50] may be
used to estimate and calibrate the demand in the future.
A test network with 40 (4 × 10) intersections and 25 ODs is
also tested to show how the approach scales. This network
is created by duplicating the network of 20 intersections.
We used three demand profiles to represent different saturation
levels. According to Assumption 1, one set of values for
weights can be ��s �� = ����s = 1 for all s, �� ∈ N in
which s �= �� and ��ss = − ∑

��∈Cns :s �=�� ����s for weights
on self-arcs s ∈ N . We also set the step size rules as
αk = 1/

k0.55 and γ k = 1/
k, that satisfy Assumption 2. For

20 intersection network, the termination is set to reach a
disagreement of 0.5 for each sub-problem. It should be noted
that networks with 20 and 40 intersections respectively result
in 4,218,000 and 14,120,000 decision variables, representing
a large optimization program.

VI. RESULTS

A. Benchmarking the Methodology

1) Comparison With a Central Approach: We applied
DGA and a central approach to the case study network of
20 intersections. TABLE I shows the total travel time and
the total computation time by our approach and the central
approach under three different demand patterns. The SODTA
formulation has more than 4 million decision variables in this
case study, and we could not find the optimal solution by
running CPLEX for cases with less than 150 GB of memory.
DGA reduced the decision variables of each sub-problem
to 243,600 on average. Each pair of sub-problems shares
6,000 variables for one-directional street and 12,000 variables
for two-directional streets. No feasibility occurred in this table.
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Fig. 4. The case study of 20 intersections, its CTM characteristics, and demand patterns.

TABLE I

OBJECTIVE FUNCTION AND COMPUTATION

TIME FOR 20-INTERSECTION NETWORK

DGA required only 5 GB of memory to generate the solutions.
Note that the distributed approach is implemented with a
parallel architecture. It also found the solutions with at most
5% optimality gap in less than 2.01 hours, which translates to
about 97 % shorter runtime than CPLEX.

We allowed DGA to run for 4000 iterations (about 50%
more iterations). The optimality gap of DGA is reduced from
5.49% to 2.80%, 5.50% to 2.49%, 5.01% to 3.35%. The
runtime of DGA is changed from 1.60 to 3.98, 1.81 to 4.87,
and 2.01 to 4.89 hours, and still, the computation time is
substantially less than that of CPLEX (90% less). The new
results show that the difference of runtime with CPLEX is
still large even though the optimality gap is very small.

Moreover, the computation time of the algorithm pro-
posed in this paper is 0.76 seconds, which is 33.34% less
than the lowest CPU time for all tested formulations by
Long et al. [19]. The number of variables for LTM and CTM-
based formulations are 1,656 and 5,400. The CPU time to
solve four different CTM-based formulations by Long and
Szeto [20] varies between 1.14 seconds to 36.32 seconds.

Fig. 5.a-c shows the objective value of DGA and the optimal
objective value for three demand profiles over iterations.
The distributed approach reduces the value of the objective

Fig. 5. The objective functions for the network of 20 intersections.

function towards the optimal value over iterations. Note that
the optimal solution from CPLEX had the well-known holding
back problem due to the linearization of the minimization
functions in CTM. However, the solutions from the distributed
approach did not have this issue since we found the solutions
by simulating the network using non-linear CTM equations as
presented in [51]. In all three figures, the optimality gap was
at most 5% when we stopped the approach.

2) Comparison With a Danzig-Wolfe Decomposition-Based
Algorithm (DWDA): We compared the solutions and perfor-
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TABLE II

BENCHMARK WITH DANZIG-WOLFE DECOMPOSITION ALGORITHM
FOR THE NETWORK OF 20 INTERSECTIONS

mance of the DGA to an OD-based decomposition approach
developed in [13]. TABLE II shows different characteristics
and performance measures for both approaches. Danzig-Wolfe
Decomposition-based Algorithm (DWDA) has a master prob-
lem and several sub-problems that are solved iteratively with
a stopping criterion of a 5% gap between the upper bound
and lower bound of the approach. Each sub-problem has all
decision variables and constraints for a SODTA formulation
with one OD pair. Since we have 15 ODs, the number of
sub-problems is 15. New extreme points are generated by
sub-problems and added to the master problem solution pool.
Therefore, the complexity of the master problem increases
over iterations.

DGA has an intersection-based decomposition, and the
number of sub-problems is 20 due to having 20 intersections
in the network. This approach does not have any central com-
ponent or master problem. The number of decision variables
differs slightly in each sub-problem of DGA depending on
the number of nodes and links and is at least 48% less than
the number of variables in the sub-problems of DWDA. The
number of iterations in DWDA is at most 101 while this
number is 1715 for DGA. Even though we have more number
of iterations in DGA, the computation time of each iteration
is much less. The total run-time of DGA is 74% more than
DWDA in undereducated demand pattern. However, when
most of the decision variables have non-zero values in the
oversaturated condition, the runtime of DGA is improved by
77% compared to DWDA. Moreover, since we have 48% fewer
variables in DGA, we only required 5 GB of memory though
we need at least 20 GB of memory to run DWDA.

B. The Performance of the Methodology

Fig. 6 presents the disagreement on the value of shared
decision variables for three sub-problems with their neighbors
for three demand profiles over iterations. In demand profile 1,
when each sub-problem has a disagreement value of less
than 0.5, the algorithm is terminated.

The algorithm reached a 5.5% optimality gap for demand
profile 1 at iteration 1706, see Fig. 6.a. The algorithm reached
a disagreement value of 0.5 for the second demand pattern at
iteration 1708 with the 5.5% optimality gap, see Fig. 6.b. The
approach also reached a disagreement value of 0.5 at iteration

Fig. 6. Disagreement value ε over iterations in 20-intersection network.

1715 iterations for the third demand pattern with a similar gap
of 5.0%. As expected, the disagreement increased with the
demand level. However, the gap is the same for all scenarios
once the approach is terminated.

Fig. 7.a - c shows the run-time of three sub-problems
over iterations for the three demand profiles. We assigned
each sub-problem to a different computational node using a
multi-thread platform. The sub-problems are independent and
optimized synchronously. Each sub-problem represents one
intersection with an almost equal number of variables and
constraints with other sub-problems. Therefore, the run-time
is approximately the same among different nodes, which
reduces overhead delays. The run-time of each sub-problem
is relatively similar for all three demand profiles, and having
a more congested sub-problem did not significantly affect
the computation time; however, the total run-time differs by
at most 20% between demand profiles due to the additional
number of required iterations.

TABLE III shows the computation time for each section
of the approach under three demand patterns. The runtime
for the initialization step is negligible for all demand profiles.
The distributed gradient update consists of step 1: computing
weighted averages, step 2: moving values towards the negative
direction of the gradient, and step 3: projecting values on the
feasible region of sub-problems. Finding the weighted average
needs the least CPU time, and projection has the highest
computation time. The projection of the value of variables
is implemented for all sub-problems at the same time, and its
CPU time has increased by increasing the demand. This can
happen because more number of decision variables has non
zero values as the demand increases, and more computational
effort is required to find variables’ optimal values. No spe-
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Fig. 7. The run-time of three sub-problems 20-intersection network.

TABLE III

BREAKDOWN OF RUNTIMES FOR THE NETWORK OF 20 INTERSECTIONS

cific trend has appeared for other steps including termination
criterion calculation.

Fig. 8.a-d shows the disagreement on the value of decision
variables for each sub-problem with its neighbors at itera-
tions 1, 500, 1000, 1800 for three demand profiles. Each
sub-problem is shown with a number following the same
layout shown in Fig. 4. The spectrum shows a range of colors
depending on the value of the disagreement. Darker color
represents a higher disagreement value. Fig. 8.a-d present
the disagreement at each sub-problem for the under-saturated
demand profile. The colors become lighter as the number
of iterations increases, which shows that the conflict on
the proposed value by each sub-problem with its neighbors
decreases. Fig. 8.e-h and Fig. 8.i-l display the same pattern
for the second and third demand profiles, respectively.

C. The Effects of the Number of ODs on Convergence

Fig. 9 shows the impact of the number of OD pairs
(15, 20, and 40) on the convergence of our approach in the
test network of 20 intersections and semi-saturated demand.
The algorithm reached the termination criteria in 1708, 2157,
and 2319 iterations with 5%, 4%, and 5% optimality gaps for
15, 20, and 40 ODs, respectively. Increasing the number of

Fig. 8. The value of disagreement at each sub-problem.

OD pairs led to more iterations for convergence; however, the
number of iterations does not increase as fast as the number
of decision variables. Specifically, increasing the number of
ODs from 20 to 40 doubles the number of decision variables
but only increases the number of iterations by 7%.

D. The Effects of the Study Period Duration on Convergence

In this section, we evaluated the effect of increasing the
duration of the study period on convergence. We tested three
loading periods of 150, 300, and 450 time steps, as shown in
Fig. 10. The three cases required 1420, 1708, and 2081 iter-
ations with 5%, 4%, and 4% optimality gaps to reach the
termination criterion. As we increased the loading time, the
number of required iterations to meet the termination was
increased. Increasing the loading time created more conges-
tion. Therefore, the number of iterations was increased by
increasing the loading period. However, the rate of increase
in the required iterations was much less than the increase in
the number of decision variables.

E. The Effects of the Network Size on Convergence

We also studied the effects of network size on convergence
by looking at networks of 10, 20, and 40 intersections with
similar characteristics, as shown in Fig. 11. An increase in
network size increased the number of decision variables from
1,674,000 to 4,218,000, and 14,120,00. DGA was converged
in 807, 1708, and 1710 iterations with 2%, 4%, and 5%
optimality gaps for networks with 10, 20, 40 intersections,
respectively. The loading period, demand, and the number of
OD pairs were the same in all cases. The number of iterations
for convergence was increased by increasing the network size;
however, at a rate much slower than the increase in the network
size. Increasing the size of the network from 20 intersections
to 40 increases the number of required iterations by only two,
which shows the scalability of the proposed methodology.
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Fig. 9. The effects of the number of OD pairs on DGA convergence.

Fig. 10. The effect of study period duration on DGA convergence.

F. The Effect of Network Size on Decision Space

We also tested the approach on a network with 40 intersec-
tions with 632 cells, 780 links, 400 time steps, and 25 OD pairs

Fig. 11. The effect of network size on DGA convergence.

that bring the total number of decision variables to 14,120,000.
We used the same termination criterion that was applied to
other cases. By increasing the intersections from 20 to 40, the
number of decision variables increased from ∼4 million to
∼14 million (more than a factor of 3). We need to mention
that the literature that includes models of networks with
thousands of intersections and OD pairs use either exit flow
functions, point queue models, or link-performance functions.
These approaches are aggregated and have significantly fewer
decision variables and do not provide the accuracy that is
required for traffic operation purposes. In this paper, we use
the CTM model, which is more accurate but at the expense
of additional complexity. The network of 40 intersections is
significantly larger than comparable studies that have used the
cell transmission model [10], [12], [52]. The studies solve the
problem for 5805 to 489,700 decision variables [11], [16].

Increasing the number of links from 387 to 780 and
nodes from 316 to 632 does not change the complexity of
each sub-problem due to the intersection-based distribution
of the formulation. However, increasing the study period
from 400 to 500 time steps and OD pairs from 15 to 25 lead to
having more variables. Even though the variables are increased
by 70%, we can find the solutions with at most 5.70%
optimality gap in at most 5.34 hours, as shown in TABLE IV.

G. The Effect of the Network Size on Run-Time

Fig. 12 shows the total run-time for sub-problems for
the network of 20 intersections with 15 and 30 ODs and
the network of 40 intersections with 25 ODs. Increasing
the number of OD pairs from 15 to 30 in the network of
20 intersections has increased the number of decision variables
by 50% and run-time at each iteration by 71% on average.
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TABLE IV

INCREASING THE NETWORK SIZE FROM 20 TO 40 INTERSECTIONS

Fig. 12. The run-times of the proposed methodology.

When the size increases, the number of variables in each sub-
problem increases only by the number of OD pairs in this case.
The number of cells, links, and time steps remains constant.
By increasing the number of intersections from 20 with
15 ODs to 40 intersections with 25 ODs, the number of
decision variables in each sub-problem has increased by 70%.
The run-time to generate solutions at each time step has
increased by 52% on average.

VII. CONCLUSION

We introduced a gradient-based methodology that distrib-
uted SODTA into several independent sub-problems. This
methodology overcomes the main drawback of existing
decomposition techniques by having a fully distributed frame-
work that does not require a centralized component. Each sub-
problem represents one intersection. The set of constraints and
the objective function of the CTM-based SODTA problem is
distributed among sub-problems such that each sub-problem
has some parts of the SODTA formulation with decision
variables corresponding to the intersection region assigned to
that sub-problem.

DGA updates the decision variables at each iteration by
combining the proposed values for the shared decision vari-
ables by finding their weighted average. The approach also
considers the gradient of the objective function at each
sub-problem in updating these values. Then, DGA projects the
computed values on the feasible region of each sub-problem.
The update procedure continues until it reaches a consensus

TABLE V

NOTATIONS
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TABLE V

(Continued.) NOTATIONS

on the proposed values for shared decision variables among
sub-problems. DGA was tested on a Nguyen and Dupuis [48]
network and a portion of the downtown Springfield network in
Illinois. The run time of this approach was 33.34% less than
the lowest run time for tested formulations on Nguyen and
Dupuis [48] network by Long and Szeto [20]. DGA required
96% less memory and 97% less time compared to CPLEX
to find solutions with a 5% optimality gap. In comparing
DGA with a Danzig-Wolfe Decomposition-based Algorithm,
the runtime was improved by 77% in oversaturated condition.

Adapting DGA to solve various types of DTA formulations
like the DTA model proposed for emergency conditions [53]
and the DTA model incorporated with signal timing optimiza-
tion [54]–[56] can be considered as future research directions.
Further research on different network partitioning scenarios
presented in [57] and their effects on the convergence and
run-time of our approach is needed. In a future study, we will
consider multi-modal transportation systems similar to the
model proposed by Bevrani et al. [58]. A more general for-
mulation with multi-commodity flows similar to the presented
model by Bevrani et al. [59], [60] can also be employed for
generalizing this approach. We will also study the possibility
of estimating the expected number of iterations to achieve a
solution within a small gap in future studies.

APPENDIX NOTATIONS

See Table V.
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